
Spatiotemporal Pattern Queries

Mahmoud Attia Sakr
Database Systems for New Applications
FernUniversität in Hagen, 58084 Hagen,

Germany
Faculty of Computer and Information Sciences

University of Ain Shams, Cairo, Egypt

mahmoud.sakr@fernuni-hagen.de

Supervised By
Ralf Hartmut Güting

Database Systems for New Applications
FernUniversität in Hagen, 58084 Hagen,

Germany

rhg@fernuni-hagen.de

ABSTRACT
Capturing moving objects data is now possible and becom-
ing cheaper with the advances in the positioning and sensor
technologies. The increasing amount of such data and the
various fields of applications call for intensive research work
for building a spatiotemporal DBMS. This involves several
aspects such as modeling the moving objects data, designing
query methods, query optimization, ...etc. This PhD project
goes in this direction. Our goal is to design and implement
a language for the Spatiotemporal Pattern Queries (STP
queries). This includes the design of an expressive query lan-
guage, the integration with the query optimizers for efficient
evaluation, and the implementation within the context of a
spatiotemporal DBMS. The STPs can be either individual
or group according to the number of objects composing the
pattern. Our work covers both types. We have already com-
pleted a solution for the individual STP queries. Currently
we are working in group STP queries.

1. INTRODUCTION
This PhD project is part of the continuous work to repre-

sent and query moving objects [8] [7] [5]. It aims at support-
ing the complex class of queries called spatiotemporal pat-
tern (STP) queries. Whereas the standard spatiotemporal
queries selects the moving objects based on spatiotemporal
predicates, STP queries selects them based on temporal
arrangements of such predicates. A spatiotemporal pattern
can be either individual or group according to the number
of the objects that are involved in the pattern. An example
for individual STP query would be: find all trains that
encountered a delay more than half an hour after passing
through a snow storm. The example shows an STP that is
a sequence of two spatiotemporal predicates. The pattern
can be completely evaluated for every train, hence the name
individual STP. An individual STP query, hence, reports the
moving objects that fulfill a set of spatiotemporal predicates
in a certain a temporal arrangement.

.

On the other hand, a group STP query reports the pat-
terns that involve a collective movement of several moving
objects. An example for group STP queries would be: find a
traffic pattern where cars comming from side roads aggregate
together in a main street resulting in high traffic. An answer
is a group of cars that together fulfill the pattern.

The STP queries are required for many application do-
mains such as the behavioral study of animals, traffic mon-
itoring, crime investigation, ...etc. The topic has attracted
many researchers as we discuss in Section 2. Most of the
related work goes in the direction of providing algorithms for
the efficient evaluation of specific STPs. With the exception
of the works in [6] and [10], there are no proposals for a
language for STP queries up to our knowledge. These two
languages have limitations that we discuss in detail.

The first objective of this PhD project is to support both
the individual and the group STP queries within the context
of the moving objects model in [8] [7] [5]. The intended
outcome is a language that can express and evaluate the
two kinds. The language is required to cover a wide range
of patterns. More specific, it should neither be restricted
to certain types of moving objects, nor to certain kinds of
spatiotemporal operations. Moving objects can be moving
geometries (e.g. moving points, moving regions, and moving
lines), moving scalars (e.g. moving integers, moving strings,
moving booleans, ...etc) or moving collections (e.g. moving
sets, moving graphs, ...etc). The set of spatiotemporal op-
erations that can be applied to these moving types is large
and extensible. The language for STP queries is therefore
required to accept the newly added operations beforehand.

The second objective is to extend the query optimizer to
support the STP queries. On the one hand, the language
must always be able to compute the valid results. Whereas
on the other hand, the optimizer should be able to suggest
the use of available indexes when possible. Obviously this is
mandatory for an efficient execution of STP queries on large
moving objects databases. The optimizer extension of STP
queries must allow for extending the set of moving objects
types and/or the set of spatiotemporal operations.

The third objective is to implement the language and the
optimizer extension within Secondo [1] where a big part of
the model in [8] [7] [5] is already realized. Secondo is an
open source extensible DBMS platform. It is suitable for
experimenting with new data types and operations.

We have completed a solution for individual STP queries
including the optimizer extension and the implementation
in Secondo. The results were demonstrated in [12]. The
approach is available as a technical report in [11], and is

72

uqxzhou
Typewritten Text
Copyright is held by the author/owner(s).VLDB 2010 PhD Workshop, September 13, 2010, Singapore

submitted as a journal manuscript. The complete imple-
mentation is available as an open source Secondo Plugin
on the Secondo web site [1] along with a user manual and
an application example.

Currently we are finalizing the formal design of the lan-
guage of the group STP queries. We have also implemented
parts of the design. The results so far are promising. We
didn’t yet start the design of the optimizer extension.

The rest of this paper is organized as follows: Section
2 presents the closely related work. Section 3 briefly ex-
plains the moving objects model that we assume in this
PhD project. Our work is presented in Sections 4 and
5. Section 4 illustrates the solution of the individual STP
queries. Section 5 skitches our design for group STP queries.
Finally Section 6 concludes the paper.

2. RELATED WORK
In the literature, the two problems of individual STP

queries and group STP queries are handled separately. The
first is handled within the database literature while the sec-
ond is handled within the data mining literature. There
exist few proposals related to the individual STP queries.
We describe here the two most relevant approaches [9] and
[6]. A longer list of related work can be found in [11].

The work in [9] proposes an index structure and efficient
algorithms to evaluate the individual STP queries. It is
however restricted to the moving(point) data type and to
the spatial and neighborhood predicates.

The work in [6] formally defines the class of predicates
called spatiotemporal developments. They describe the
change in the topological relationship between two moving
objects with time. For example, the spatiotemporal devel-
opment p Crosses r, where p is a moving(point) and r is a
moving(region), is defined as:

Crosses= Disjoint meet Inside meet Disjoint

This language is limited because it can only describe the
changes in the topological relationship between pairs of mov-
ing objects. An individual STP query would more generally
describe the interaction of the moving object with many
other objects in the spatiotemporal space, and would involve
many kinds of predicates.

The problem of group STP queries was visited more often
in the literature. One would identify three main approaches
for the solutions. The first uses visual analytics and infor-
mation visualization to help the end users better explore
the trajectory data and find the patterns (e.g. the work by
Andrienko and Andrienko [3]). The second would propose
specialized algorithms that are able to report certain group
STPs (e.g. the work to report flock patterns in [4]). The
third is the language approach, that is defining a query
language capable of expressing such queries. We follow this
approach in this project. The only related example that we
are informed about is the work by Laube [10].

Laube [10] proposed the REMO (RElative MOtion) ma-
trix model. It is a two dimensional matrix, where the rows
represent the moving objects, and the columns represent
a series of time instants (i.e. a discrete representation of
time). The entries of the matrix are some predefined motion
attributes that are computed for the moving objects (e.g.
object speed, azimuth, acceleration, ...etc). The REMO
matrix hence is a two-dimensional string, where two di-
mensional patterns can be searched for. The patterns are
expressed by means of a regular language.

The REMO model is conceptually clean and highly ex-
pressive. We see, however, the following shortcomings in it:
(1) The size of the REMO matrix is proportional to the
database size. One would even need to maintain several
matrixes for several motion attributes; (2) The REMO ma-
trix does not inherently support the spatial proximity con-
straints between the moving objects. Such constraints are
additionally applied to the results. For example, according
to the REMO model a flock pattern is a concurrency pat-
tern plus spatial proximity constraints. This would require
that the flock members fulfill the concurrency pattern (i.e.
concurrently share similar values for the motion attribute).
Such a definition is restrictive. In reality, the flock members
may not share common motion attributes for the whole du-
ration (e.g. some cows in a flock of cows may move around,
close to their flocks, with different speed and/or azimuth);
(3) The model can not express the patterns that are de-
scribed based on object interactions. The motion attributes
in the REMO matrix describe every object independently of
the other objects. Patterns that are expressed based on the
mutual relationships between the moving objects (e.g. north
of, closer than, intersects, ...etc.) can not be expressed;
(4) The REMO matrix handles the time discretely. It does
not directly support continuous trajectories. They have to
be sampled first, which is known to incur inaccuracies in the
data representation.

Beside the above limitations, none of the related work
addresses the issues of query optimization and system inte-
gration, which are among the objectives of this PhD project.

3. THE MOVING OBJECTS DATA MODEL
This work is based on the abstract data types (ADT)

model for moving objects in [8] [7] [5]. The model de-
fines the moving type constructor. It constructs the mov-
ing counterpart of every static data type. Moving geome-
tries for example are represented using three abstractions:
moving(point), moving(region), and moving(line). In the
abstract model [8], moving objects are modeled as temporal
functions that map time to geometry or value. For example,
a moving(point) is modeled as a curve in the 3D space (i.e.
time to the 2D space).

In [7] a discrete data model implementing the abstract
model is defined. In the discrete model, moving types are
represented by the sliced representation as units.

Definition 1. A data type moving(α) is a temporally or-
dered sequence of units. Every unit is a pair (I, Instant → α).
The semantic of a unit is that at any time instant during
the interval I, the value of the instance can be calculated
from the temporal function Instant → α. Unit intervals are
not allowed to overlap, yet gaps are possible (i.e. periods
during which the value of the object is undefined). 2

The moving data types are denoted by appending m to
the standard type (e.g. mpoint). Similarly, the unit types
are denoted by appending u. The mpoint , for example, is
modeled in the discrete model as a temporally ordered list
of upoints, each of which consists of a time interval and a
line function. The coordinates of the mpoint at any time
instance within the interval are obtained by evaluating the
line function. The moving type constructor is similarly
applied to the scalar data types (e.g. real , bool), and the
collection datatypes (e.g. set , graph).

73

Similar to the moving type constructor for the data types,
the temporal lifting operation [8] is applied to all the stan-
dard operations to obtain their lifted counterparts. A lifted
operation is obtained by allowing one or more of the argu-
ments of a standard operation to be of a moving data type.
For example, a static predicate and its corresponding lifted
predicate are defined as follows;

Definition 2. A static predicate is a function with the
signature

P1 × × Pn → bool

where Pi is any static data type (e.g. integer , point , region).
2

Example: Berlin inside Germany.

Definition 3. A lifted predicate is a function with the
signature

P1 × × Pk× ↑ Pk+1 × ...× ↑ Pn →↑ bool

where ↑ is the moving type constructor. 2

Example: Train RE103 inside Berlin.
Since some of the arguments of the lifted predicate are

moving, the return type is an mbool . Our language design
builds on the concept of lifted predicates, hence we can easily
leverage a considerable part of the available infrastructure.

4. INDIVIDUAL STP QUERIES
This section describes the first part of the PhD project.

This part is already completed, that is the language design,
the optimizer integration, and the implementation within
Secondo are all finished.

4.1 The STP Predicate
An individual STP query is a query that contains one

or more individual STP predicates (STPP for short). An
STPP describes the pattern as a set of spatiotemporal pred-
icates that fulfill in a certain temporal arrangement (e.g. a
sequence). To motivate the idea of our design, consider the
following query:
Example: Find the snow storms that passed over the cities
Berlin then Dresden in order, while the speed of the storm
is at least 80 km/h.

The query describes an individual STP consisting of three
spatiotemporal predicates: storm intersects Berlin, storm
intersects Dresden, and speed of storm ≥ 80 km/h. The
predicates are required to happen in the order that the
second is after the first, and the third happens during the
first and the second.

We propose a two step modular language design of the
STPP. The first step is to define a special kind of predicates
on moving objects that report the time intervals, during
which they are fulfilled. The second step is to check the
temporal arrangement of the predicate fulfillments.

Fortunately, the lifted predicates in Definition 3 do exactly
what we need in the first step. They are a general and
powerful class of predicates, as they are simply the time
dependent version of arbitrary static predicates. They are
not restricted to certain data types of arguments nor to
certain types of operations.

In the second step, the STPP processes the mbool results
of the lifted predicates and checks the temporal arrange-
ment. It is modeled as a constraint satisfaction problem

(CSP). All the constraints are binary temporal constraints,
each of which states the temporal arrangement between two
of the lifted predicates. In Definitions 4, 5, and 6 we define
the parts that compose the STPP. The STPP itself is defined
in Definition 7.

Definition 4. A temporal constraint is a binary con-
straint that accepts two mbool parameters and checks a
certain temporal arrangement between the pairs of their
units. It has the signature

mbool × mbool × stvector → bool

2

where the stvector argument describes the temporal arrange-
ment between the two mbool arguments. It represents a
vector temporal connector, as defined below in Definition
6. Syntactically the operator stconstraint(, ,) is used to
express a temporal constraint.

Assume the expression stconstraint(P, Q, V) where P and
Q are lifted predicates each returning an mbool value, and V

is a vector temporal connector. Let the set of time intervals
of the units during which P is true be called P true and
similarly Qtrue for Q. The temporal constraint is evaluated
by calculating the Cartesian product of P true and Qtrue,
then applying the vector temporal connector V on every
pair of time intervals. It is fulfilled if one or more pairs
fulfill V and we call such a pair a supported assignment.

Temporal connectors can be simple or vectors as shown
in Definitions 5, 6.

Definition 5. Simple temporal connectors are temporal
connectors that enforce only one interval relationship. The
set of simple temporal connectors is inspired from the 13
Allen’s operators [2] with the addition that the intervals may
degenerate into time instants. Hence 26 simple temporal
connectors are possible. 2

We define a language for writing the simple temporal
connectors. The letters aa denote the begin and end time
instants of the first argument. Similarly bb are the begin and
end of the second argument. The order of letters describes
the constraint, that is, a sequence ab means a < b. The dot
symbol denotes the equality constraint, hence, the sequence
a.b means a = b. A constraint must contain all the four
letters. The complete list of the simple temporal connectors
can be found in [11]. A temporal connector can alternatively
be written as a vector of simple temporal connectors.

Definition 6. A vector temporal connector is a set of
simple temporal connectors. Vectors are interpreted as the
disjunction of their constituent simple temporal connectors.
Hence 226 vector temporal connectors are possible. 2

In the following we use the operator vec as a tool for con-
structing these vectors. For instance, the vector (vec(aabb,
abab, aa.bb)), is a temporal connector that is fulfilled if
any of its three components is fulfilled. It expresses the tem-
poral arrangement that the interval aa starts before the start
of the interval bb, and ends before the end of the interval bb.
Now we define the spatiotemporal pattern predicate.

Definition 7. A spatiotemporal pattern predicate (STPP)
is a triple 〈t, L, C〉 where t is a tuple containing at least one

74

moving object, L is a set of lifted predicates that apply to
the moving object in t and C is a set of temporal constraints.
The predicate is fulfilled, if and only if the evaluations of the
lifted predicates in L fulfill all the temporal constraints in
C. In SQL, the operator pattern expresses the STPP. 2

Example: Assuming the schema:
SnowStorm[id: int , storm: mregion]
Berlin: region, Dresden: region
The snow storm example in Section 4.1 may be written as
follows:

SELECT id, storm
FROM SnowStorm
WHERE

pattern([storm intersects Berlin as onBerlin,
storm intersects Dresden as onDresden,
speed(center(storm)) >= 80.0 as highSpeedB,
speed(center(storm)) >= 80.0 as highSpeedD],

[stconstraint(onBerlin, onDresden, vec(aabb)),
stconstraint(highSpeedB, onBerlin, vec(abba, abb.a)),
stconstraint(highSpeedD, onDresden, vec(abba, abb.a)])

Note that syntax of the STPP assigns aliases for the lifted
predicates (using the as operator), so that they can be refer-
renced in the temporal constraints. This is analogous to the
aliases given to attributes and tables in the standard SQL.

In the query, intersects is a lifted predicate that is true
whenever the spatial extent of the mregion argument in-
tersects the region argument. The center operator accepts
an mregion and yields an mpoint representing the region’s
center. The speed operator yields an mreal representing
the moving speed of the mpoint . The mreal value is then
compared to the value 80.0 using the lifted comparison
predicate yielding an mbool. The lifted predicate (speed(.)
>= .) is written twice within the pattern predicate with two
different aliases highSpeedB, and highSpeedD. This is to make
sure that the last two temporal constraints are independent.
That is, the storm has to be moving fast on Berlin, and on
Dresden but not necessarily in between.

This model allows for arbitrarily complex STP queries1.
The naive evaluation of the STPP solves the CSP iteratively
for every tuple. In the following subsection we describe
how to integrate the STPP with the optimizer for efficient
evaluation.

4.2 Optimizing the STPP
In the proposed design of the STPP, the moving objects

data is processed by the lifted predicates in the first step.
The second step processes the mbool results of the lifted
predicates. In order to optimize the STPP, one would need
a general technique for optimizing the lifted predicates.

Our idea is that, during the query rewriting phase of the
optimization, an extra standard predicate (i.e. a predicate
returning a bool) is added to the query for each of the lifted
predicates in the STPP. The standard predicate is chosen
according to the lifted predicate, so that the fulfillment of
the standard predicate implies that the lifted predicate is
fulfilled at least once. This is a necessary but not sufficient
condition for the fulfillment of the STPP. In the following
phases of optimization, the optimizer will be able to suggest
optimized execution plans involving index accesses based on
the extra standard predicates.

1In [11], we describe an extended version of the STPP that
is more expressive. It is omitted here due to lack of space.

Table 1 shows two examples for the mapping between the
lifted predicates and the standard predicates. The complete
list of mappings for the lifted predicates that are defined in
[8] can be found in [11]. Clearly, the list is extensible for the
lifted predicates that can be introduced in the future.

Table 1: Mapping lifted predicates into standard
predicates.

Lifted Predicate Standard Predicate
mregion intersects region mregion passes region

speed(mpoint) > real sometimes (speed(mpoint)
> real)

In Table 1, the intersects lifted predicate yields an mbool
which is true during the time intervals where the mregion
argument spatially intersects the region argument. The
corresponding passes predicate yields true if the mregion ar-
gument ever intersects with the region argument. Clearly, if
passes yields false, so does the STPP as well. The benefit of
adding passes is that the optimizer will already have rules for
its optimization. The second row in Table 1 demonstrates a
rather more general mapping. The sometimes predicate ac-
cepts an mbool and yields bool . It yields true if its argument
is ever true, otherwise false. Hence, sometimes is a general
way to map lifted predicates into standard predicates. This
is done with the hope that the query optimizer already has
rules for optimizing sometimes(.). In our implementation,
we’ve extended the optimizer with such rules.

To illustrate the idea, the following query shows how the
snow storm query is rewritten.

SELECT id, storm
FROM SnowStorm
WHERE

pattern([storm intersects Berlin as onBerlin,
storm intersects Dresden as onDresden,
speed(center(storm)) >= 80.0 as highSpeedB,
speed(center(storm)) >= 80.0 as highSpeedD]],

[stconstraint(onBerlin, onDresden, vec(aabb)),
stconstraint(highSpeedB, onBerlin, vec(abba, abb.a)),
stconstraint(highSpeedD, onDresden, vec(abba, abb.a)])

and
storm passes Berlin and
storm passes Dresden and
sometimes(speed(center(storm)) >= 80.0) and
sometimes(speed(center(storm)) >= 80.0

where the four additional standard predicates in the end of
the query will trigger the optimizer to use available spatial
and spatiotemporal indexes on the storm attribute during
the generation of the query execution plan.

5. GROUP STP
This is the second part of the PhD project. It is still under

progress. The goal is to design a language for group STP
queries, integrate it with the query optimizer, and do the
implementation in Secondo.

We model group STPs as compound patterns that consist
of primitive patterns, denoted patternoids. For example, the
trend-setting pattern is a compound pattern that consist of
the two patternoids the trend-setters and the followers.

Accordingly, the language that we propose describes the
pattern in three steps: the lifted predicates, the patternoids,
and the pattern. The lifted predicates, similar to their use
in the STPP, map the moving objects data to mbool values.

75

The patternoid operators report primitive group patterns by
processing the mbool results form the lifted predicates. The
pattern is the top level layer which is represented by the
reportpattern operator. It applies temporal constraints to
the results of the patternoid operators and report the found
instances of the group STP.

5.1 Patternoid Operators
We have defined two patternoid operators in our design:

the gpattern and the crosspattern. The gpattern operator
reports the concurrency patterns. These are the patterns
that are described in terms of sets of moving objects that
concurrently maintain similar values for certain movement
attributes. For example, 40 moving objects that move con-
currently with speed more than 80 km/h for a period of 10
minutes is a concurrency pattern.

The crosspattern operator reports the patterns that are
described in terms of the interactions between the moving
objects. For example the flock pattern is described as a
group of at least n moving objects, where the mutual spatial
distance between every pair is at most r for a time duration
of at least d. A slightly different pattern is the moving
cluster. It requires that every moving object in the group
has at least one neighbor in the same group with a distance
of at most r. Both patterns are expressed based on the
mutual distance between pairs of moving objects.

Obviously the list of patternoid operators is extensible.
Formally a patternoid operator is defined as:

Definition 8. A patternoid operator is a mapping

set(tuple(identifier , moving(x))) → set(mset)

2

where the tuple-set/stream represents the moving objects
of any moving type and their identifiers. Every mset in the
result represents a time dependent set of the identifiers of
a group of moving objects that fulfill the patternoid. An
mset in the result must contain exactly one unit (uset) or
many adjacent units without temporal gaps in between as we
explain later. An uset is a constant temporal unit consisting
of a time interval and a set value, as in Definition 1. The
time interval member is denoted timeInterval, and the set
member is denoted constValue.

The patternoid operators are allowed to accept other argu-
ments in order to do this mapping. One important argument
for example is the lifted predicate that maps the moving
objects into mbools for further processing.

In the following subsection, we formally define the gpattern
patternoid operator. The definition of the crosspattern op-
erator is omitted here due to the lake of space.

5.2 The gpattern Operator
The gpattern operator has two variants:

• gpattern(M , α, n, d, alteast).

• gpattern(M , α, n, d, exactly).

where M is the tuple-set in Definition 8, α is a lifted pred-
icate applied to the moving objects in M , n > 0 is an int ,
and d > 0 is a time duration (e.g. in seconds).

In the following definitions, X denotes an mset , x denotes
a uset , P denotes a time periods, I denotes a time interval ,
t denotes a time instant , and e denotes a moving object.

Definition 9. gpattern(M , n, d, α, atleast)

= R = {(X)|always(X ⊆ M), always(|X| ≥ n),

nocomponents(deftime(X)) = 1,

∄Y ∈ R such that deftime(X) ⊆ deftime(Y),

∀x ∈ X, ∀e ∈ x.constValue such that

P = deftime(e ∈ X) :

i)∀I ∈ P : length(I) ≥ d

ii)∀t ∈ P : (α(e))(t)

}

2

where R is the set(mset) result of the operator. The first
two conditions state that every mset in result always con-
tains at least n moving objects from the input. The third
condition states that a result will contain exactly one unit
(uset) or many adjacent units without gaps in between. To
guarantee a finite number of results, the fourth condition
assures that the number of members and the definition time
of every reported group are the maximum possible. The
last condition states that a moving object can appear in the
pattern several times (i.e. join and leave the group several
times). Every join must be for a duration of at least d. The
operators always, nocomponents, deftime, ...etc that are used
in the definition are defined in [8].

The operator reports all groups of at least n objects, that
concurrently fulfill the lifted predicate α for a time period
of at least d. The group members may change (i.e. some
members join or leave the group), but their number does not
go below n. The second variant of the operator is defined
as:

Definition 10. gpattern(M , n, d, α, exactly)

= {(X)|always(X ⊆ M), always(|X| = n),

nocomponents(X) = 1, length(deftime(X)) ≥ d,

∀e ∈ X[0].constValue, ∀t ∈ X[0].timeInterval : (α(e))(t),

∀I such that X[0].timeInterval ⊂ I :

∃e ∈ X[0].constValue, ∃t ∈ I such that ¬(α(e))(t)

}

2

where this variant reports all possible groups of size n. The
group members are not allowed to change, therefore every
mset in the result contains exactly one uset .

The number of results from this variant can be very large.
For example, if a group of size k > n is found that ful-
fills the pattern, the number of results is

`

k

n

´

. We are not
determined yet whether to ignore this variant during the
implementation, or to keep it as an option for the user.

The gpattern operator works conceptually similar to the
REMO model discussed in Section 2. It can, however, pro-
cess continuous trajectories. It also overcomes the expensive
space requirement of the REMO matrix. The well defined
inputs and return types of the patternoid operators, allows
for seamless integration within the DBMS.

Similar to the REMO model, the gpattern operator does
not take into consideration the spatial proximity between
the group members. We have defined operators for the mset
to check the spatial proximity among the members. These
operator can be used to filter the results of the gpattern

76

similar to the REMO approach. A better solution however,
is to use the crosspattern operator because it inherently
support all kinds of mutual relationships between group
members including the spatial proximity.

5.3 The reportpattern Operator
The reportpattern operator is the top level operator for

reporting group STPs. It is similar to the STPP in Section
4.1 in that it allowes for temporal constraints between the
results of the patternoid operators. Its signature is:

set(tuple[identifier, moving(x)])
× list of (fun(.) → set(mset))
× list of bool

→ set(tuple[mset, mset, ...])

where the second argument is the list of patternoid operators
each of which has an alias. The first argument is passed as is
to each of the patternoid operators in the second argument.
The third argument is a list of temporal constraints similar
to those in Definitions 4, 5, and 6. The tuples in the result
contain as many attributes as the number of patternoid
operators. The attributes names are the aliases of the pat-
ternoid operators, and they have the same order.

Similar to the STPP, the operator is modeled as a binary
temporal constraint satisfaction problem. The variables are
the aliases of the patternoid operators. The domain of each
variable is the definition times of the msets yielded by the
corresponding patternoid operator. Note that the definition
time of each of these msets is a single time interval according
to Definition 8. The constraints of the CSP are the list of
temporal connectors in the last argument. Once a complete
supported assignment (i.e. an assignment of all variables
that fulfills all the constraints) is found, the corresponding
msets are put into a tuple and added to the result stream.

The following example shows the use of the reportpattern
and the gpattern operators to express a trend-setting pattern
query.

query Ghazals feed
reportpattern[

trendSetter: gpattern(speed(.Trip) > 30.0, 5,
create_duration(0, 60000), atleast),

followers: gpattern(speed(.Trip) > 30.0, 40,
create_duration(0, 180000), atleast);

stconstraint("trendSetter", "follower",
vec("abab", "aba.b", "abba"))]

consume

where Ghazals is a relation with the schema:
Ghazals[Id: int , Trip: mpoint]
The query is written in the Secondo executable language.
This is because we didn’t study the integration with the
query optimizer yet, hence no SQL-like syntax. The first
line feeds the Ghazals relation as a stream of tuples. The
reportpattern operator gets the tuple stream, two patternoid
operators with the aliases trendSetter and followers, and one
temporal constraint. The trendSetter patternoid reports
all groups of at least 5 ghazals that run with speed more
than 30 km/h for a duration of at least one minute. The
followers patternoids report similar groups of minimum size
of 40 and minimum duration of 3 minutes. The temporal
constraint accepts only the combinations such that the fol-
lowers patternoid starts after the trendSetter patternoid and
disappears after, with, or before it.

6. CONCLUSIONS
This PhD project aims at defining a language for spa-

tiotemporal pattern queries. The work is divided into two
parts: individual STP queries, and group STP queries. The
two proposed languages are highly expressive compared to
other closely related work. They are designed to fit within
the context of spatiotemporal DBMSs, and to integrate with
the query optimizers.

7. ACKNOWLEDGMENTS
This PhD project is covered by the DAAD scholarship

granted to the author in the year 2008.

8. REFERENCES
[1] Secondo web site.

http://dna.fernuni-hagen.de/secondo.html/.

[2] J. F. Allen. Maintaining knowledge about temporal
intervals. Commun. ACM, 26(11):832–843, 1983.

[3] G. Andrienko, N. Andrienko, and S. Wrobel. Visual
analytics tools for analysis of movement data.
SIGKDD Explor. Newsl., 9(2):38–46, 2007.

[4] M. Benkert, J. Gudmundsson, F. Hübner, and
T. Wolle. Reporting flock patterns. Computational
Geometry, 41(3):111 – 125, 2008.

[5] J. A. Cotelo Lema, L. Forlizzi, R. H. Güting,
E. Nardelli, and M. Schneider. Algorithms for moving
objects databases. Comput. J., 46(6):680–712, 2003.

[6] M. Erwig and M. Schneider. Spatio-temporal
predicates. IEEE Trans. on Knowl. and Data Eng.,
2002.

[7] L. Forlizzi, R. H. Güting, E. Nardelli, and
M. Schneider. A data model and data structures for
moving objects databases. In SIGMOD ’00:
Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, pages 319–330,
New York, NY, USA, 2000. ACM.

[8] R. H. Güting, M. H. Böhlen, M. Erwig, C. S. Jensen,
N. A. Lorentzos, M. Schneider, and M. Vazirgiannis.
A foundation for representing and querying moving
objects. ACM Trans. Database Syst., 2000.

[9] M. Hadjieleftheriou, G. Kollios, P. Bakalov, and V. J.
Tsotras. Complex spatio-temporal pattern queries. In
VLDB ’05, 2005.

[10] P. Laube. Analysing point motion Spatio-temporal
data mining of geospatial lifelines. PhD thesis,
Department of Geography, University of Zurich,
Switzerland, 2005.

[11] M. Sakr and R. H. Güting. Spatiotemporal pattern
queries. Technical Report Informatik-Report 355,
FernUniversität Hagen, November 2009.

[12] M. Sakr and R. H. Güting. A new approach for
spatiotemporal pattern queries in trajectory
databases. In MDM ’10: Proceedings of the 11th
International Conference on Mobile Data
Management, May 2010.

77

